Tuesday, 4 June 2013

Critical Angle - Why your phone calls don't leak out of optical fibers.




Critical Angle
Reflection Icon Light Icon Refraction Icon
Critical Angle
 
Why your phone calls don't leak out of optical fibers.
A transparent material such as glass or water can actually reflect light better than any mirror. All you have to do is look at it from the proper angle. 
 
  • A light source  with a well-defined beam. A laser is best, if one is available. Otherwise, you can use a Mini-Maglite� flashlight focused to make a beam, or a slide projector with its beam narrowed. (To narrow the beam of a slide projector, cut an index card the same size as a slide, and then make a hole in the middle of it with a paper holepunch. Put it in the projector so the light only goes through the hole.)
  • A rectangular aquarium filled with water.
  • A few drops of milk (or some powdered milk) to add to the aquarium water to make the beam visible.
(15 minutes or less)

Fill the aquarium with water. Then add the milk a drop at a time, stirring after each drop, until you can see the light beam pass through the water. If you use powdered milk, add a pinch at a time.

(15 minutes or more)

Direct the light beam upward through the water so that it hits the surface of the water from underneath. You can shine the beam into the water through the transparent bottom of the aquarium, or in through the side wall. (With the Mini-Maglite�, you can seal the light in a watertight plastic bag and place the light right in the water.) The beam will be more visible if you can dim the room lights.

Point the beam so that it hits the surface of the water at just about a right angle. In the aquarium, you may be able to see both the reflected beam, which bounces back into the water, and the refracted beam, which comes out of the water and into the air. (Dust in the air helps you see the refracted beam. You can add chalk dust to the air. You can also search for the beam and track it with a piece of paper.) Notice that most of the beam leaves the water and only a faint beam is reflected back down into the water.    Light beam in water

Slowly change the angle at which the beam of light hits the surface of the water. Notice that the beam reflected into the water grows brighter as the beam transmitted into the air becomes dimmer. Also notice that the transmitted beam is bent, or refracted. 

Experiment until you find the angle at which the transmitted beam completely disappears. At this angle, called the critical angle, all of the light is reflected back into the water.  
 

In general, when a beam of light (the incident beam) hits the interface between two transparent materials, such as air and water, part of the beam is reflected and part of it continues through the interface and on into the other material. The light beam is bent, or refracted, as it passes from one material into the next. 

Angle > 49 degreesAngle < 49 degrees
When the angles marked are greater than 49°, light is totally reflected from a water-air surface.When the angles marked are less than 49°, some light leaves the water.

The farther the beam is from perpendicular when it hits the surface, the more strongly it is bent. If the light is moving from a material with a low speed of light into a material with a higher speed of light (for example, from water into air), the bending is toward the surface. At some angle, the bending will be so strong that the refracted beam will be directed right along the surface; that is, none of it will get out into the air. 

Beyond that angle (the critical angle), all the light is reflected back into the water, so the reflected beam is as bright as the incident beam. This phenomenon is called total internal reflection, because very nearly 100% of the beam is reflected, which is better than the very best mirror surfaces. 

The critical angle for water is measured between the beam and a line perpendicular to the surface, and is 49 degrees. 


Total internal reflection helps transmit telephone messages along optical fibers. Any light that is not aligned parallel to the axis of the fiber hits the wall of the fiber and is reflected (totally!) back inward,since the angle of incidence with which the light hits the wall is much larger than the critical angle. This helps prevent the signal from weakening too rapidly over long distances, or from leaking out when the fiber goes around a curve. This demonstration can also be done by replacing the aquarium and water with a small transparent plastic block, which can be bought at a local plastics supply store. Such blocks are also available as part of the Blackboard Optics� set made by Klinger Scientific.

No comments:

Post a Comment